Australian National Algae Culture Collection:
Biodiversity, pigments and bioproducts

Susan Blackburn
Lesley Clementson, Ian Jameson, Cathy Johnston, David Batten
CSIRO Marine and Atmospheric Research 15th April 2010
Australian National Algae Culture Collection

ANACC

•CSIRO National Biological Collections: Algae – a living collection

•1000 strains of more than 300 microalgae species

•unique Australian biodiversity, sourced from the tropics to Antarctica, marine and freshwater microalgal classes

•isolation of new strains from Australia’s biodiversity

•strain characterisation: taxonomic identification, chemical & molecular, growth parameters

Algal Culture Facility

•Controlled environment rooms and cabinets: secure AQIS QC5.2

Formerly CSIRO Collection of Living Microalgae
http://www.cmar.csiro.au/microalgae
Algal Culture Facility – AQIS QC5.2
Number of Extant Genera, Species & Strains in CCLM Grouped by Class

Low species high strain number = Species replication enables characterization of population variation
Genetics, FTIR

High species number low strain replication = molecular diversity for bioproducts
Discovery

Expt Collection = >100 algal
500 bacteria (cryo)
Number of Strains in ANACC

Rest of world
Australian

Bacillariophyceae
Chlorophyceae
Chrysophyceae
Cryptophyceae
Dictyochophyceae
Dinophyceae
Euglenophyceae
Eustigmatophyceae
Pelagophyceae
Prasinophyceae
Prymnesiophyceae
Raphidophyceae
Rhodophyceae
Thraustochytriidae
Xanthophyceae
Zoantharia
Australian National Algae Culture Collection

CSIRO Microalgae Supply Service

We supply high quality microalgae starter cultures and complementary technical advice to the aquaculture industry as well as for research, education and other industrial applications throughout Australia and internationally.

All cultures are grown under controlled environment conditions. Selected strains are axenic (bacteria-free).

Orders are dispatched via courier to ensure arrival in the best possible condition.

For more information, strain list, or to place orders, contact:

Ms Cathy Johnston, Manager, Microalgae Supply Service
GPO Box 1538, Hobart, Tasmania 7001, Australia
Phone 61 (0)3 6232 5316 Fax 61 (0)3 6232 5471

e-mail: cathy.johnston@csiro.au
http://www.cmar.csiro.au/microalgae/
Microalgae Supply Service: locations supplied
Pigments

1960s: Dr Shirley Jeffrey, biological mapping of Australia’s oceans, development of pigment signatures

1990s: SCOR / UNESCO
- cultures for pigment standards
- chemotaxonomy
- composition of phytoplankton
Diversity of Australian and global populations: Gymnodinium catenatum (Dinophyceae)
Diversity of Australian and global populations: *Gymnodinium catenatum* (Dinophyceae)

Plot of first and second dimension of the three-dimensional MDS analysis of *G. catenatum* strains. Region /population clusters (bounded by solid line)

Plot of the first and third dimension of the three-dimensional MDS analysis of *G. catenatum* strains. *G. catenatum* clusters bounded by solid or shaded lines.

Bolch et al. 1999, J. Phycol. 35, 356-67, Blackburn et al. 2001 Phycologia, 40, 78-87,
Diversity of Australian and global populations: *Nodularia* (Cyanobacteria)
Nodularia genetic relationships: cpcBA-IGS

from Hayes and Barker 1997

Anabaena 7120
Baltic Sea
N. spumigena

Australian
N. spumigena

Baltic Sea
Nodularia sp.

Baltic Sea
Nodularia sphaerocarpa

Nodularia spp.

BY1
9401
9427
HKVV
73104
7804
9336

Anabaena 7120
Baltic Sea
N. spumigena

Australian
N. spumigena

Baltic Sea
Nodularia sp.

Baltic Sea
Nodularia sphaerocarpa

Nodularia spp.

Nodularia global populations

• Correlation of the hepatotoxin nodularin with carotenoids:
 • Louise Schlüter et al. (DHI, Denmark and Norwegian University of Science and Technology) and Jameson and Blackburn (CSIRO Australia) Biochemical Systematics and Ecology 2008, 36, 749-57

• N. spumigena and N. sphaerocarpa:
 • 4-ketomyxol-2’-fucoside and 1’-O-methyl-4-ketomyxol-2’-fucoside: latter most important diagnostic pigment for toxic N. spumigena, Baltic Sea

• Relationship between carotenoids and the toxin nodularin:
 • Light intensity
 • Stage of growth

• Relationship between Australian strain and carotenoids / toxins not so clear

• Global population differences

• More studies of this type needed!
Australian algae industry

Cognis algae ‘lakes’, Whyalla, South Australia (also Western Australia)

Largest global producer natural β-carotene; Nutraceuticals; food / feed colorants

Dunaliella salina

Since early 1980s
Energy Transformed Flagship
Biodiesel from Algae: Strain selection and optimisation

- **Bioproducts**: New Australian endemic algal strains for biodiesel, other biofuels and co-products, including high value pigments.

- New Australian industry for biodiesel from algae: coupling Australian endemic microalgae – selected for biomass and/or oil production along with co-products – with technologies developed by CSIRO to optimise:
 - algal growth, biomass and/or oil production
 - utilising flue gas, enhance solar energy conversion and CO$_2$ uptake
Commercial Feasibility

• We are piloting a microalgal biorefinery in which:
 • Production of Carotenoids looks to be the key now
 • Rank order (in terms of potential revenue earned):
 • Carotenoids (~75% of potential revenue!)
 • Protein
 • Polyunsaturated fatty acids (PUFA)
 • Biodiesel
 • Animal feed
 • Acrylic acid

• This ranking may change, so we must look now at:
 • Markets for carotenoids, protein, PUFA and biofuels
 • Potential revenues and costs for each of the above
 • Species of microalgae that are best for the above
Carotenoids

• Small number have found commercial application, including:
 • β-carotene US$242 million worldwide in 2004
 • Astaxanthin US$234 million worldwide in 2004
 • Canthaxanthin US$148 million worldwide in 2004
 • Lutein US$139 million worldwide in 2004
 • Zeaxanthin
 • Lycopene
 • Others

• Mainly used as food dyes, as feed additives in aquaculture and to enhance the pigmentation of chicken and egg yolks.

• Stringent regulations on synthetic dyes in the food sector → R&D on carotenoids from microalgae as food additives.

• Applications in the cosmetic industries (Borowitzka, 1988; Benemann, 1992; Johnson and Schroeder, 1995).
Potential co-products: Pigments
ANACC strain characterisation: pigments

![Pigment Composition Graph]

- BD3-04
- BD3-14
- BD3-16
- BD4-03
- BD4-04
- BD4-05
- BD4-12
- BD4-13
- BD5-06
- BD5-11
- BD6-07
- BD6-20

Visible Carotenoids
- **Fuco**
- **Neo**
- **Pras**
- **Viola**
- **Hex-fuco**
- **Astax**
- **Zea**
- **Lut**
- **Canthax**
- **Chl b**
- **B, B-carotene**
- **Tot. astax isomers**

CSIRO. Algae Collection SeaHARRE April 2010
High pigment producing strains

Sample code

Highest lipid producers

D. salina, Cyanophyte (F), Dunaliella, Cymatosira, Eustigmatophyte ?, Symbiodinium, Botryococcus, Haematococcus (H), Haematococcus (C)

% of total pigments

Tot. astax isomers

Highest lipid producers

High pigment producing strains
Coorong, South Australia – August 2007
Surface salinity ranged from 53 – 116
C002 -77 and C005 - 116

Pigment conc. normalised to chl-a
% of total carotenoids

Fuco Pras Allo Zea Lut Canthax Chl b
other carotenoids Lutein

Ankyra sp.

38%
The future: Combined technologies / bioremediation / multiple bioproducts

- Biodiesel
- Protein meal
- Fermentation to alcohols
- Speciality chemicals
CSIRO Marine and Atmospheric Research
Susan Blackburn
Head, Australian National Algae Culture Collection

Email: susan.blackburn@csiro.au
Web: www.csiro.au/group

Thank you
This is an example of a Section Divider slide Arial Regular, 44pt
3D MDS analysis of
G. catenatum RAPD fingerprints
Algal Production: a challenge!
However algae produce high biomass in nature (algal blooms)

Dinoflagellate bloom, eastern Tasmania

Cyanobacterial bloom, Queensland